Synthèse et caractérisation d'une couche de nanobâtonnets d'oxyde de zinc

Thème : La ville

Pierre Mazzucotelli N° 16775

juin 2022

Un enjeu sociétal

Mais des défis persistent :

- coûts
- durée de vie
- rendement
- disponibilité et recyclage des ressources
- intégration à l'urbanisme

Les cellules solaires à colorant...

<u>Avantages :</u>

- faible coût
- fabrication peu énergivore
- stable dans le temps
- léger et souple
- intégration facile aux objets

1/40

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Un enjeu sociétal

Présentation des cellules solaires à colorant Défis d'une cellule solaire à colorant Objectifs du TIPE Plan

Présentation des cellules solaires à colorant

Figure 1 : Fonctionnement d'une cellules solaire à colorant. Absorption et transport sont dissociés.

Principe:

- → La lumière est absorbée par un dye
- → Une fine couche de semiconducteur (ZnO) transporte les e^- .

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion Un enjeu sociétal Présentation des cellules solaires à colorant Défis d'une cellule solaire à colorant Objectifs du TIPE Plan

Présentation des cellules solaires à colorant

Figure 1 : Fonctionnement d'une cellules solaire à colorant. Absorption et transport sont dissociés.

Principe:

- → La lumière est absorbée par un dye
- → Une fine couche de semiconducteur (ZnO) transporte les e^- .

Figure 2 : Processus photoélectrique à l'œuvre.

2/40

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion Un enjeu sociétal Présentation des cellules solaires à colorant Défis d'une cellule solaire à colorant Objectifs du TIPE Plan Déductions :

- 1) Rôle central du **semi-conducteur**.
- Nécessité d'une grande surface spécifique afin de maximiser la quantité de colorant adsorbée et d'assurer un haut rendement de conversion.

Nanostructuration

Comment ? ...

Une méthode intéressante : la synthèse hydrothermale.

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion Un enjeu sociétal Présentation des cellules solaires à colorant Défis d'une cellule solaire à colorant Objectifs du TIPE Plan

Objectifs du TIPE

Problématique :

Dans quelle mesure une synthèse hydrothermale permet-elle d'élaborer une couche de nanobâtonnets d'oxyde de zinc de manière simple et efficace ? Et, quel est l'impact de la couche d'amorce sur la croissance des nanobâtonnets ?

Objectifs:

Réaliser une synthèse hydrothermale de nanocristaux de ZnO sur verre conducteur.

Etudier l'impact d'une couche d'amorce sur la croissance du ZnO.

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Un enjeu sociétal Présentation des cellules solaires à colorant Défis d'une cellule solaire à colorant Objectifs du TIPE Plan

- I. Synthèse hydrothermale
- II. Caractérisation des propriétés photoélectriques
- III. Caractérisation des propriétés morphologiques : MEB
- IV. Caractérisation des propriétés structurales :

diffraction de rayons X

	Introduction	l la antou aostátol	
	I. Synthèse hydrothermale	Un enjeu societai	
	II. Caractérisation des propriétés photoélectriques	Presentation des cellules solaires à colorant	- /
	III. Caractérisation des propriétés morphologiques : MEB	Defisid une cellule solaire a colorant	5/40
IV.	Caractérisation des propriétés structurales : diffraction rayons X	Objectifs du TIPE	-
	Conclusion	Plan	

I. Synthèse hydrothermale

Méthode

Carte d'identité de la méthode :

 Objectif : recouvrir un substrat d'une couche de nanobâtonnets de ZnO.

• Avantages :

- faibles coûts
- simplicité de mise en place
- température de travail basse (90°C)
- réalisée en solution

aqueuse

$$\begin{aligned} (CH_2)_6 N_{4(aq)} + 6 \ H_2 O_{(l)} &= 6 \ CH_2 O_{(aq)} + 4 \ NH_{3(aq)} \\ NH_{3(aq)} + H_2 O_{(l)} &= NH_4^+_{(aq)} + OH^-_{(aq)} \\ Zn(NO_3)_{2(aq)} &= Zn^{2+}_{(aq)} + 2 NO_3^-_{(aq)} \end{aligned}$$

$$Zn^{2+}{}_{(aq)} + 2 OH^{-}{}_{(aq)} = 2 Zn(OH)_{2}{}_{(aq)}$$

$$Zn(OH)_{2(aq)} = ZnO_{(s)} + H_2O_{(l)}$$

Figure 3 – Réactions mises en jeu lors de la synthèse hydrothermale

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Méthode Mode opératoire

Mode opératoire

Avec/Sans :

2

3

4

5

- Choix du substrat : plaque en verre conductrice du type FTO (*Fluorine-doped Tin Oxide*).
 - Détermination du côté conducteur de la plaque à l'aide d'un multimètre.
 - Nettoyage de la FTO à l'eau et l'éthanol.
 - Mise de côté de la FTO durant 40 min pour que l'éthanol s'évapore.
 - Ajout de quelques gouttes de solution de grains de ZnO constituant la future couche d'amorce.

Figure 4 – Dépôt de la solution de grains de ZnO qui constituera la couche d'amorce.

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Méthode Mode opératoire

Mode opératoire

Avec/Sans:

6

- Dans un tube autoclave de 50 mL, ajout de 12,0 mL d'une solution de $Zn(NO_3)_2$. 6 H_2O à 0,20 mol/L ainsi que 7,0 mL d'une solution d'hexaméthylènetétramine à 0,20 mol/L.
- Introduction de la plaque dans le tube autoclave.
 - Mise à l'étuve à 90°C durant 1h30.

Figure 5 – Photographie des deux tubes

Obtention de 2 plaques : « une avec couche d'amorce » (A) + « une sans couche d'amorce » (B)

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Méthode Mode opératoire

II. Caractérisation des propriétés photoélectriques

Un montage à trois électrodes est réalisé en mode chronoampérométrie simple avec variation d'UV.

Figure 6 – Schéma du montage

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Principe de fonctionnement Mode opératoire Résultats et discussions

Mode opératoire

En pratique : utilisation du potentiostat OrigaStat OGS080 en mode **chronoampèromètrie simple**

Figure 7 – Photographie des trois électrodes immergées dans la solution de potasse : électrode de travail (E.T.), contre-électrode (C.E.) et électrode de référence (E. ref).

Figure 8 – Photographie du potentiostat OrigaStat OGS080

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Principe de fonctionnement Mode opératoire Résultats et discussions

Mode opératoire

En pratique : utilisation du potentiostat OrigaStat OGS080 en mode chronoampèromètrie simple

Figure 7 – Photographie des trois électrodes immergées dans la solution de potasse : électrode de travail (E.T.), contre-électrode (C.E.) et électrode de référence (E. ref).

ON/OFF UV périodiquement (30s) en mesurant l'intensité au cours du temps.

11/40

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Principe de fonctionnement Mode opératoire Résultats et discussions

Résultats :

 → variation d'intensité lors de l'irradiation : le ZnO modifie donc bien la conductivité.

Figure 9 – Comparaison de conductivité des plaques de FTO avec et sans couche d'amorce sous irradiation UV variant périodiquement (période de 30s).

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Principe de fonctionnement Mode opératoire Résultats et discussions

Figure 9 – Comparaison de conductivité des plaques de FTO avec et sans couche d'amorce sous irradiation UV variant périodiquement (période de 30s).

Résultats :

→ variation d'intensité lors de l'irradiation : le ZnO modifie donc bien la conductivité.

→ variation plus forte pour la plaque « avec couche d'amorce » :
 la couche d'amorce joue un rôle sur la croissance des nanobâtonnets de ZnO.

Introduction I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X

Conclusion

Comment expliquer cette différence ?

<u>Hypothèses :</u>

- 1
- Une **densité** de ZnO moins importante sur la plaque « sans couche d'amorce ».
- 2
- Une taille des nanobâtonnets différente.

Nécessité d'accéder à des informations plus précises sur la **morphologie** des échantillons...

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Principe de fonctionnement Mode opératoire Résultats et discussions

III. Caractérisation des propriétés morphologiques : MEB

• <u>Principe de fonctionnement</u> :

cartographie de la zone balayée

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

• <u>Principe de fonctionnement</u> :

cartographie de la zone balayée

- <u>Avantages :</u>
 - grande profondeur de champ = netteté, et ce malgré un relief important;
 - grande capacité de grossissement;
 - image sans aucune réflexion parasite (e⁻ et non photon!);
 - Inclinaisons de l'échantillon dans toutes les directions.

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

• <u>Principe de fonctionnement</u> :

cartographie de la zone balayée

- <u>Avantages :</u>
 - grande profondeur de champ = netteté, et ce malgré un relief important;
 - grande capacité de grossissement;
 - image sans aucune réflexion parasite (e⁻ et non photon!);
 - Inclinaisons de l'échantillon dans toutes les directions.

Figure 10 – Photographie du microscope JEOL 7001F du GEMaC

14/40

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Acquisition des images

Plaque « avec couche d'amorce »

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Principe de fonctionnement et mode opératoire Acquisition des images Comparaison **Résultats et discussions**

Acquisition des images

Plaque « sans couche d'amorce »

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Principe de fonctionnement et mode opératoire Acquisition des images Comparaison **Résultats et discussions**

Grossissement : x 5000

Source : image réalisée avec JEOL 7001F, 16/06/2022, GeMaC

17/40

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Grossissement : x 10 000

Source : image réalisée avec JEOL 7001F, 16/06/2022, GeMaC

18/40

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Grossissement : x 40 000

Source : image réalisée avec JEOL 7001F, 16/06/2022, GeMaC

19/40

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Observations

 Forme : structure hexagonale des nanobatônnets = variété allotropique du ZnO dite « Würtzite ».

* Source : Verrier C., thèse de doctorat : « Fabrication et caractérisation avancée de cellules photovoltaïques à base de nanofils de ZnO » (l'IMEP-LAHC et LMGP à l'UGA), 2017 .

Introduction		
I. Synthèse hydrothermale		
II. Caractérisation des propriétés photoélectriques	Principe de fonctionnement et mode opératoire	
III. Caractérisation des propriétés morphologiques : MEB	Acquisition des images	20/40
IV. Caractérisation des propriétés structurales : diffraction rayons X	Comparaison	
Conclusion	Résultats et discussions	

Observations

- Forme : structure hexagonale des nanobatônnets = variété allotropique du ZnO dite « Würtzite ».
- Taille : Taille des bâtonnets similaire sur les deux plaques.

Figure 11 – Rappel des images (x 20 000).

21/40

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Observations

- Forme : structure hexagonale des nanobatônnets = variété allotropique du ZnO dite « Würtzite ».
- Taille : Taille des bâtonnets similaire sur les deux plaques.
- Orientation : Pas de direction de croissance privilégiée pour les deux plaques *a priori*.

Figure 11 – Rappel des images (x 20 000).

22/40

* Source : Verrier C., thèse de doctorat : « Fabrication et caractérisation avancée de cellules photovoltaïc

Introduction	
I. Synthèse hydrothermale	
II. Caractérisation des propriétés photoélectriques	Principe de
III. Caractérisation des propriétés morphologiques : MEB	Acquisition
IV. Caractérisation des propriétés structurales : diffraction rayons X	Comparais
Conclusion	Résultats e

Observations

- Forme : structure hexagonale des nanobatônnets = variété allotropique du ZnO dite « Würtzite ».
- Taille : Taille des bâtonnets similaire sur les deux plaques.
- Orientation : Pas de direction de croissance privilégiée pour les deux plaques *a priori*.
- Densité : Qualitativement, la plaque « avec couche d'amorce » présente une densité plus importante de nanobâtonnets de ZnO que la plaque « sans couche d'amorce ».
 Et Quantitativement ? ...

Figure 11 – Rappel des images (x 20 000).

23/40

* Source : Verrier C., thèse de doctorat : « Fabrication et caractérisation avancée de cellules photovoltaïc

	Introduction
	I. Synthèse hydrothermale
Princi	II. Caractérisation des propriétés photoélectriques
Acquis	III. Caractérisation des propriétés morphologiques : MEB
Comp	IV. Caractérisation des propriétés structurales : diffraction rayons X
Résult	Conclusion

- La valeur **0** renvoie à la couleur **noire** et **255** à la couleur **blanche**.
- Similitude des profils pour une plaque donnée.
- Densité de pixel noire plus importante sur la plaque sans couche d'amorce

→ faible densité de nanobatônnets.

Introduction		
I. Synthèse hydrothermale		
II. Caractérisation des propriétés photoélectriques	Principe de fonctionnement et mode opératoire	
III. Caractérisation des propriétés morphologiques : MEB	Acquisition des images	24/40
IV. Caractérisation des propriétés structurales : diffraction rayons X	Comparaison	
Conclusion	Résultats et discussions	

Grossissement : x 40 000

Source : image réalisée avec JEOL 7001F, 16/06/2022, GeMaC

25/40

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Grossissement : x 40 000

Source : image réalisée avec JEOL 7001F, 16/06/2022, GeMaC

26/40

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Grossissement : x 40 000

Plaque « avec couche d'amorce »

- Ordre de grandeur :
- → hauteur moyenne : $2 \cdot 10^{-7} m$
- Calculs statistiques :
- → Surface active totale = $29 \cdot 10^6 \pm 6 \%$ nm²
- \rightarrow Surface plaque photo = 37 $\cdot 10^4 \pm 2$ % nm²

Surface active totale /Surface plaque photo = 7,46 ± 0,49 ≈ 7,5

Source : image réalisée avec JEOL 7001F, 16/06/2022, GeMaC

26/40

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Grossissement : x 40 000

Source : image réalisée avec JEOL 7001F, 16/06/2022, GeMaC

27/40

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Grossissement : x 40 000

- Ordre de grandeur : hauteur moyenne : $2 \cdot 10^{-7} m$
- Calculs statistiques :
- → Surface active totale : $15 \cdot 10^6 \pm 8 \%$ nm²-
- \rightarrow Surface plaque photo = 37 $\cdot 10^4 \pm 2$ % nm²

Surface active totale /Surface plaque photo = 3,92 ± 0,32 ≈ 4

Plaque « sans couche d'amorce »

Source : image réalisée avec JEOL 7001F, 16/06/2022, GeMaC

28/40

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

IV. Caractérisation des propriétés structurales : diffraction de rayons X

• <u>Principe de fonctionnement</u> :

Figure 12 – diffractomètre à rayons X Siemens D500 du GEMaC

Source : ENS Lyon, site « Culture Sciences physique », Page « Diffraction des rayons X », consulté le 22 décembre 2022).

Introduction		
I. Synthèse hydrothermale		
II. Caractérisation des propriétés photoélectriques	Principe de fonctionnement et mode opératoire	20/40
III. Caractérisation des propriétés morphologiques : MEB	Résultats et discussions	29/40
IV. Caractérisation des propriétés structurales : diffraction rayons X		
Conclusion		

• <u>Principe de fonctionnement</u> :

Figure 12 – diffractomètre à rayons X Siemens D500 du GEMaC

Source : ENS Lyon, site « Culture Sciences physique », Page « Diffraction des rayons X », consulté le 22 décembre 2022).

Introduction I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion	Principe de fonctionnement et mode opératoire Résultats et discussions	30/40

• <u>Principe de fonctionnement</u> :

Figure 12 – diffractomètre à rayons X Siemens D500 du GEMaC

Source : ENS Lyon, site « Culture Sciences physique », Page « Diffraction des rayons X », consulté le 22 décembre 2022).

Introduction		
I. Synthèse hydrothermale		
II. Caractérisation des propriétés photoélectriques	Principe de fonctionnement et mode opératoire	24/40
III. Caractérisation des propriétés morphologiques : MEB	Résultats et discussions	31/40
IV. Caractérisation des propriétés structurales : diffraction rayons X		
Conclusion		

Les indices de Miller permettent de désigner l'orientation des plans cristallins dans un cristal.

Figure 13 – Exemple de plans cristallins désignés par leur indice de Miller dans une maille hexagonale.

Introduction I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Principe de fonctionnement et mode opératoire Résultats et discussions

Résultats :

→ On retrouve tous les pics correspondants au FTO.

Figure 14 - Spectre de diffraction de rayons X : a) Substrat FTO ;

Introduction I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X	Principe de fonctionnement et mode opératoire Résultats et discussions	33/40

<u>Résultats :</u>

→ On retrouve tous les pics correspondants au FTO.

→ « Sans couche d'amorce » :

 L'intensité du pic ZnO(100) est environ deux fois plus élevée que celle des pics ZnO(002) et ZnO(101) : l'orientation ZnO(100) est privilégiée.

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Principe de fonctionnement et mode opératoire Résultats et discussions

Figure 14 - Spectre de diffraction de rayons X : a) Substrat FTO ; b) Substrat FTO sans couche d'amorce; c) Substrat FTO avec couche d'amorce.

<u> Résultats :</u>

- → On retrouve tous les pics correspondants au FTO.
- → « Sans couche d'amorce » :
- L'intensité du pic ZnO(100) est environ deux fois plus élevée que celle des pics ZnO(002) et ZnO(101) : l'orientation ZnO(100) est privilégiée.
- → « Avec couche d'amorce » :
- Beaucoup plus de grains car intensité plus importante que b).
- Intensités équivalentes pour les pics ZnO(100), ZnO(002) et ZnO(101) : pas d'orientation privilégiée.

35/40

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Principe de fonctionnement et mode opératoire Résultats et discussions

Conclusion

Retour sur cette étude

Introc	111671	nn
	IULLI	UII

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Retour sur cette étude Retour sur la problématique Perspectives et remerciements

Retour sur cette étude

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Retour sur cette étude Retour sur la problématique Perspectives et remerciements

Rappel de la problématique :

Dans quelle mesure une **synthèse hydrothermale** permet-elle d'élaborer une couche de **nanobâtonnets d'oxyde de zinc** de manière simple et efficace ? Et, quel est l'impact de la **couche d'amorce** sur la croissance des nanobâtonnets ?

Introduction

I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Retour sur cette étude Retour sur la problématique Perspectives et remerciements

Rappel de la problématique :

Dans quelle mesure une **synthèse hydrothermale** permet-elle d'élaborer une couche de **nanobâtonnets d'oxyde de zinc** de manière simple et efficace ? Et, quel est l'impact de la **couche d'amorce** sur la croissance des nanobâtonnets ?

- La synthèse hydrothermale permet une croissance **simple** et **peu couteuse** de nanobâtonnets de ZnO sur un substrat de verre conducteur.
- L'ajout d'une couche d'amorce permet d'augmenter significativement la densité des nanobâtonnets. Par ailleurs, aucune direction de croissance ne semble privilégiée.

Introduction		
I. Synthèse hydrothermale		
II. Caractérisation des propriétés photoélectriques	Retour sur cette étude	20/10
III. Caractérisation des propriétés morphologiques : MEB	Retour sur la problématique	39/40
IV. Caractérisation des propriétés structurales : diffraction rayons X	Perspectives et remerciements	
Conclusion		

Perspectives et remerciements

- Comparer le processus de croissance avec d'autres substrats ?
 - Avec d'autres couches d'amorce ?

- Mieux comprendre ce processus de croissance et augmenter les performances des cellules
- **30%** à la lumière ambiante par une équipe de l'EPFL en 2022 !

Remerciements :

- Un grand merci à Gaelle Amiri, GEMaC.
- Un grand merci à Vincent Sallet, GEMaC.

Images issues du site du GEMaC, <u>https://www.gemac.uvsq.fr/annuaire</u>

Introduction I. Synthèse hydrothermale II. Caractérisation des propriétés photoélectriques III. Caractérisation des propriétés morphologiques : MEB IV. Caractérisation des propriétés structurales : diffraction rayons X Conclusion

Retour sur cette étude Retour sur la problématique Perspectives et remerciements

Vincent Sallet

Bibliographie

[1] Durupthy A., Casalot A., Jaubert A., *Chimie des matériaux inorganiques, 2de année, PC-PC**, H-Prépa Hachette Livre, Paris, **1996**, chapitres 3, 4 et 5, 24.

[2] Verrier C., thèse de doctorat : « Fabrication et caractérisation avancée de cellules photovoltaïques à base de nanofils de ZnO », (Université Grenoble Alpes), 2017.

[3] Koenig E., Jacobs A., Lisensky G., Properties of Semiconductors: Synthesis of Oriented ZnO for Photoelectrochemistry and Photoremediation, *Journal of Chemical Education*, **2017**, *94*, *738-742*.

[4] Ashfold M.N.R., Doherty R.P., Ndifor-Angwafor N.G., Riley D.J., Sun Y., The kinetics of the hydrothermal growth of ZnO nanostructures, Thin Solid Films University of Bristol, Bristol, UK, **2007**, 515, 8679-8683.

Annexe 1 :

Code Python permettant de lire, d'extraire les données relatives à la chronoampérométrie, de les mettre en forme puis de tracer les courbes du **II.** :

```
# -*- coding: utf-8 -*-
 Qauthor: Pierre Mazzucotelli
 #Importation des bibliothèques
 import matplotlib.pyplot as plt
 # Définition d'une fonction extractrice des données des fichiers .txt
vdef generation liste(titre1,titre2):
     with open(titre1, "r") as tf:
         lines1 = tf.read().split('\n')
     lines1.pop()
     L1=[float(line) for line in lines1]
     with open(titre2, "r") as tf:
          lines2 = tf.read().split('\n')
     lines2.pop()
     L2=[float(line) for line in lines2]
      return L1,L2
 # Génération des listes des grandeurs étudiées
v temps1,intensite1 = generation liste('Sans couche amorce temps.txt',
                                       'Sans couche amorce intensite.txt')
v temps2,intensite2 = generation liste('Avec couche amorce temps.txt',
                                       'Avec couche amorce intensite.txt')
 # Dimensionnement des intesités
 intensite1=[le6*line for line in intensite1]
 intensite2=[le6*line for line in intensite2]
 # Affichage
 plt.plot(temps1,intensite1,color='r', label="FTO sans couche d'amorce")
 plt.plot(temps2,intensite2,color='g', label="FTO avec couche d'amorce")
 # Mise en forme
 plt.axis([min(temps1), max(temps1), 0, 1.2*max(intensite2)])
 plt.ylabel("Intensité (µA)")
 plt.legend()
 plt.title('Chronoampérométrie simple sous UV variant périodiquement')
 plt.grid()
  plt.show()
```

<u>Annexe 2</u> :

Code Python permettant de lire les images réalisées par microcopie électronique, de les afficher avec en parallèle l'histogramme en niveau de gris correspondant. Quatre bibliothèques sont nécessaires pour la lecture de l'image et le tracé des courbes. La ligne 25, en particulier, permet l'affichage en gradient de gris (*cf* : palette = "Greys r") directement sur l'histogramme.

```
# -*- coding: utf-8 -*-
    🚽 II II II
     @ Pierre Mazzucotelli - Histogramme niveau de gris des images MEB
     # Importation des bibliothèques
     import numpy as np
     from imageio import imread
     import seaborn as sns
     from matplotlib import pyplot as plt
11
12
     #Lecture de l'image
     img = imread('ZnO-Avec-10000.png')
15
     #Affichage de l'image
17
     plt.subplot(211)
     plt.title('''Image "Avec couche d'amorce" à x40000''')
     plt.axis('off')
     plt.imshow(img)
21
22
     # Tracé de l'histogramme associé à l'image
     plt.subplot(212)
24
     effectif, valeur gris = np.histogram(img, bins=256, range=(0, 255))
     sns.barplot(x=valeur gris[0:-1], y=effectif, palette="Greys r")
25
     # Mise en forme
     plt.title("Diagramme en bâtons des niveaux de gris")
     plt.xlabel("niveau de gris")
     plt.ylabel("effectif")
     plt.xlim([0, 256])
32
     plt.ylim([0, 45000])
     plt.tight layout()
     plt.show()
```

1	Sans couche d'amo	rce				
2	Nanobattonets n	Hauteur mesurée (cm)	Hauteur réelle (nm)	Diamètre mesuré (cm)	Diamètre réel (nm)	Surface active calculée (nm²)
3	1	1,8	222	1,3	162,5	216450
4	2	1,2	147	1,2	150	132300
5	3	1,1	133	1,6	200	159600
6	4	1,8	222	1,1	137,5	183150
7	5	2,8	347	1,7	212,5	442425
8	6	1,1	134	1.3	162,5	130650
9	7	2,3	285	1,5	187,5	320625
10	8	2,8	247	2	250	370500
11	9	2.3	284	1.1	137.5	234300
12	10	0.5	60	2.5	312.5	112500
13	11	1.2	147	2	250	220500
14	12	22	274	12	150	246600
15	13	18	222	13	162.5	216450
16	10	1	122	19	237.5	173850
17	15	27	334	21	262.5	526050
18	16	14	174	2,1	202,3	261000
19	10	1	122	12	150	109800
20	10	20	247	1,2	212 5	442420
20	10	2,0	247	21	212,3	442423 E40E2E
21	20	2,0	271	2,1	202,3	340523
22	20	2,2	2/1	10	200	406500
23	21	10	234	1,3	231,5	333450
24	22	1,8	222	0,9	112,5	149850
25	23	2,3	284	1,4	175	298200
26	24	1,1	134	1,4	1/5	140700
27	25	1	122	2,1	262,5	192150
28	26	1,1	134	1,3	162,5	130650
29	27	0,5	60	1,3	162,5	58500
30	28	2,4	297	1,7	212,5	378675
31	29	2,4	297	1,2	150	267300
32	30	2,3	284	1,4	175	298200
33	31	2,3	284	1,5	187,5	319500
34	32	1,3	162	2,2	275	267300
35	33	1,1	134	0,6	75	60300
36	34	2,3	284	2	250	426000
37	35	2,4	297	1,9	237,5	423225
38	36	0,8	97	1	125	72750
39	37	1,8	223	1,8	225	301050
40	38	1,4	174	1,3	162,5	169650
41	39	1	122	1,5	187,5	137250
42	40	1,8	222	1	125	166500
43	41	2,1	260	1,5	187,5	292500
44	42	1.8	222	1.9	237.5	316350
45	43	4.8	597	2.5	312.5	1119375
46	44	2.6	322	2.2	275	531300
47	45	24	297	12	150	267300
48	46	17	209	18	225	282150
49	40	19	234	16	200	280800
50	41	1,3	234	24	200	399600
51	40	21	222	2,4	262 5	407925
52	43	2,1	200	2,1	202,3	401323
52	50	0,3	103	2,1	202,3	200605
03	51	2,3	285	1,5	187,5	320625
04	1 52	. 1.0			1/5	233100

- Ordre de grandeur : hauteur moyenne de l'ordre de 2 $\cdot 10^{-7} m$
- Calculs statistiques :

Surface active totale : $15 \cdot 10^6 \pm 8 \%$ nm² (déterminé par Excel) Surface plaque photo = $37 \cdot 10^4 \pm 2 \%$ nm² (déterminé en propageant « à la main »)

Surface active totale /Surface plaque photo = $3,92 \pm 0,32 \approx 4$

<u>Annexe 3</u> : Analyse quantitative de la plaque « sans couche d'amorce » au grossissement x40 000.

Plaque « sans couche d'amorce »

59	Avec couche d'amor	rce	l las das se ad alla (sana)	Direction of	Disesting of all (sees)	Conference the contend in (constitution
60	Nanobattonets n	Hauteur mesuree (cm)	Hauteur reelle (nm)	Diametre mesure	Diametre reel (nm)	Surface active calculee (nm ⁴)
01	-	3,2	400	1,4	1/3	420000
62	2	1,2	100	2,2	2/3	247500
63	5		125	1,3	162,5	121875
64	4	1,3	162,5	1,8	225	219375
65	5	1,3	162,5	2,2	275	268125
66	6	2,8	350	1,7	212,5	446250
67	7	2,7	337,5	1,8	225	455625
68	8	2,7	337,5	0,8	100	202500
69	9	3,2	400	1,2	150	360000
70	10	1.4	175	1.8	225	236250
71	11	2.2	275	1.7	212.5	350625
72	12	4	500	2	250	750000
73	13	26	325	27	337.5	658125
74	14	2,0	175	2,1	275	200750
75	19	- LH 	200	2,2	27 J 107 E	200730
70	10	2,4	300	1.3	107,3	101250
76	16	L/	212,5	1.2	001	191250
π	17	U	137,5	1,2	150	123750
78	18	3,4	425	17	212,5	541875
79	19	1,7	212,5	1,5	187,5	239062,5
80	20	27	337.5	18	225	455625
81	21	27	337.5	17	212.5	430312.5
82		2,7	212 E	15	212,J 197 F	251502 5
02	22	2,0	312,0 Ene	1,0	107,0	331362,3
03	23	4,2	525	3,2	400	1260000
84	24	1/	212,5	1,3	162,5	20/18/,5
85	25	1,2	150	1,4	175	157500
86	26	1.7	212,5	1,9	237,5	302812,5
87	27	2,2	275	1,2	150	247500
88	28	3,2	400	1,2	150	360000
89	29	2.7	337.5	1.2	150	303750
90	30	0.8	100	19	237.5	142500
91	31	17	212.5	2	250	318750
92	22	26	212,0	14	175	241250
02	32	2,0	323	15	107 E	041200 051500 F
93	33	2,0	312,5	1,5	187,5	301062,0
94	34		125	L7	212,5	159375
95	35	3,2	400	0,9	112,5	270000
96	36	3,1	387,5	1,4	175	406875
97	37	2,7	337,5	17	212,5	430312,5
98	38	1,2	150	2	250	225000
99	39	2,7	337,5	2.2	275	556875
100	40	32	400	17	212.5	510000
101	4	27	337.5	22	275	556875
102	47	27	337.5	18	225	455625
103	12	32	400	16	200	480000
10.3	40	J,2	400	1,0	200	400000
104	44	2,2	2/0	2,2	2/3	403750
105	45	2,7	337,5	L7	212,5	430312,5
106	46	2,7	337,5	1,8	225	455625
107	47	1,5	187,5	1,2	150	168750
108	48	0,7	87,5	2,2	275	144375
109	49	3	375	2,3	287,5	646875
110	50	3.2	400	1.7	212.5	510000
111	51	15	187.5	0.7	87.5	98437.5
112	52	0.7	.31,5	0,1	100	52500
112	52	0,7	07,3	1.4	170	01075
114		. 0,7	07,0 ACO E	1.4	170	2073
114	54	3,7	462,5	1,8	220	624375
115	55	2,7	337,5	1/	212,5	430312,5
116	56	1,7	212,5	1,8	225	286875
117	57	4,3	537,5	1,7	212,5	685312,5
118	58	4,2	525	1,6	200	630000
119	59	1.7	212,5	1,4	175	223125
120	60	4,2	525	1,7	212,5	669375
121	6	1.7	212.5	1.4	175	223125
122	62	32	400	18	225	540000
123	20	27	337 5	1	125	253125
124	200 M2	17	212 5		297 5	366263 2
125	04		212,3	2,3	207,0	420750
125	65	2,6	325	1,8	225	438750
126	66	3	375	2,2	2/5	618750
127	67	2,8	350	1,9	237,5	498750
128	68	2,7	337,5	1,1	137,5	278437,5
129	69	2,8	350	1,7	212,5	446250
130	70	3.2	400	1,9	237,5	570000
131	71	1.7	212.5	0.6	75	95625
132	72	17	212.5	18	225	286875
133	73	17	212,5	0.7	223 97 5	111562 5
134	74		212,0	10	07,0 277 E	/0002,0 /00037 E
104	74	2,7	337,3	1,3	237,3	400337,3
105	/5	۱/ ۱	212,5	1,2	150	191250
136	76	1,4	175	1,2	150	157500
137	77	0,8	100	0,8	100	60000
138	78	2,2	275	ų 0,7	87,5	144375

<u>Annexe 4</u> : Analyse quantitative de la plaque « avec couche d'amorce » au grossissement x40 000.

- Ordre de grandeur : hauteur moyenne de l'ordre de $2 \cdot 10^{-7} m$
- Calculs statistiques : Surface plaque photo = $37 \cdot 10^4 \pm 2\%$ nm² Surface active totale = $29 \cdot 10^6 \pm 6\%$ nm²

Surface active totale /Surface

plaque photo = 7,46 ± 0,49 ≈ 7,5